
Axioma In-Practice Series

Toward Dynamic Stress Tests

�
�
�
�
�

Iulian Cotoi and Robert Stamicar
�
�
�
�
�

November 2017

In an earlier paper about best practices for stress

testing market risk factors, we discussed different

types of stress tests.1 One of these types, called

transitive or predictive, is a correlated stress test.

Here a set of core (explicit) factors is selected and

shocked while the remaining shifts of peripheral

(implied) factors are inferred from the covariance

of factor returns. For example, in testing a

portfolio’s sensitivity to oil prices, oil prices are the

core factors. With their embedded factor return

correlations, transitive stress tests provide more re-

alistic P&L scenarios than user-defined stress tests.

1See Cotoi and Stamicar [2].

But how should we select the appropriate look-

back period for transitive stress tests? Typically,

risk managers subjectively select periods of ele-

vated correlation and volatilities, which are then

used as inputs for transitive stress tests. But what

if, instead, the stress scenario determined the pe-

riod when the shift was most likely to occur? More

precisely, given a stress test scenario, what is the

probability that a given regime contributed to this

shift?

Downloaded from www.hvst.com by IP address 172.28.0.10 on 07/10/2025
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We still select the core factor shifts, but in the real

world, a shift always occurs in a market context.

For instance, a large shift is more likely to occur

under adverse market conditions while a mild shift

is more likely to occur in a calm period. Thus,

transitive stress tests should be designed in which

a large shock in core factors uses periods of ele-

vated volatility and correlations for covariance ma-

trix calibration, while a small shift in core factors

incorporates normal periods of volatilities and cor-

relations.

Rather than explicitly selecting specific periods,2

the transitive stress test itself implicitly selects the

applicable period.3 Accordingly, we then use this

period for the transitive stress test. Moreover,

a blended or probability-weighted combination of

transitive stress tests can be implemented to in-

corporate intermediate shocks (along with extreme

shocks). Thus, the transitive stress test dynami-

cally adjusts as the shock size varies.

It still remains to identify different regimes for our

analysis. Statistical tools used in machine learn-

ing (ML), such as cluster analysis, can identify

specific regimes for volatility and correlation esti-

mates for transitive stress tests. In fact, there has

been a surge in utilizing ML techniques in differ-

ent areas of finance, such as validation of bank’s

models built for regulatory stress tests, such as

CCAR, despite regulatory concern over black-box

approaches.

Our goal in this note is to enhance traditional tran-

sitive stress tests in two ways:

2Other than the overall look-back period.
3The applicable periods will be determined by weighting

historical returns with probabilities.

• By using statistical techniques to identify differ-

ent regimes

• When appropriate, by dynamically adjusting

each regime’s impact on the stress test. The

core factor shifts will determine the probability

that each regime generated the observation.

In the second point above, a link is introduced be-

tween risk factor shocks and different regimes. Al-

though a link between shock size and regime is

useful, this is relevant only if we believe that mi-

grating to different regimes (as opposed to an ab-

sorbing state resulting from a structural shift) is

possible.

Ultimately, to achieve our goal, we will blend mul-

tiple transitive stress tests via a mixture model.

In each regime, separate transitive stress tests are

applied, and then probability weighted for the final

result.

Transitive Stress Test

Background

Under a transitive stress test, the movement of

peripheral factors is inferred from the core factor

shifts. We can represent this relationship as:

rppq � Brpcq , (1)

where rpcq is a vector of core factor returns, rppq

is a vector of peripheral factor returns, and B is

a matrix of betas. Once B is known, we shift

r(c), compute r(p) via (1), and then reprice the

portfolio.4 The computation of B is straightfor-

ward if we assume that factor returns are normally

distributed. Consider the following covariance ma-

4Asset prices can be modeled using nonlinear models.
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Table 1: Transitive Stress Test with Different Look-Back Periods on 20-Sept-2017.

Reporting Levels VIX +10% VIX +10%
Current Period 2011-2012

(%) (%)

US Equity Sept 20 2017 �0.45 �1.38

H Manager 1

I Stock (121) �0.24 �0.74

H Manager 2

I Stock (77) �0.21 �0.64

Figure 1: Rolling Stock Beta to VIX.
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trix, partitioned under core and peripheral factor

returns:

Σ �

�
�Σpp Σpc

Σcp Σcc

�
� (2)

Taking conditional expectations with respect to

core factor returns gives

Err(p) | r(c)s � ΣpcΣ
�1
cc r

(c) , (3)

Thus, B � ΣpcΣ
�1
cc .

The computation of B depends on the look-back

period and can vary significantly under different

periods. As a motivating example, we consider a

transitive stress test where the VIX is the core fac-

tor. In Table 1, we apply a shift of 10% and mea-

sure its P&L impact on a US-based equity port-

folio. The analysis date is 20-Sept-2017, and two

different look-back periods are chosen. In the first

period, we simply utilize a look-back of one year

from the analysis date. The resulting loss under

current correlations is only 0.45%. The second pe-

riod is from July 2011 to July 2012, resulting in a

much greater loss of 1.38%.

Clearly, the look-back is important. In the first

case, we were using current correlations under a

quiet period while the second period was noisy

with elevated volatility. We can generally repre-

sent our results in Table 1 as

r(p) �

Noisy Period

wβp1qr(c) �

Quiet Period

p1 � wqβp2qr(c) , (4)

where w � 1 represents the noisy period from July

2011 to July 2012 while w � 0 represents the re-

cent quiet period.

We might argue the stress test under the noisy pe-

riod (w � 1) in Equation (4) is more appropriate

since the goal of stress tests is to apply adverse

conditions to our portfolio. Nevertheless, measur-

ing the difference in stress test P&Ls between cur-

rent and volatile periods is helpful.

It is common to identify different periods of volatil-

ities and correlations by examining rolling plots of

volatilities, correlations, or betas. In Figure 1,

which plots the rolling beta of the S&P 500 to

the VIX, we see that the beta varied significantly

over the historical periods that were used in the

risk report in Table 1. Another way to identify

regimes is to set a bound on VIX returns as illus-

trated in Figure 2. This is one way to create a

library of relevant look-back periods for covariance

matrix calibration.

Regime-Switching Approach

As mentioned earlier, traditional transitive stress

tests rely on selecting look-back periods, usually

based on subjective choices for historical volatilities

and correlations.

Identifying regimes, such as low-volatility regimes,

or identifying a structural change in an asset class,

can help us design better stress tests (or even a

better pricing model).

Logistic Mixture of Linear Components

One standard way to model different regimes is to

use a mixture model such as a Gaussian mixture

model (GMM). In this setting, returns are modeled

as a linear combination of Gaussian distributions.

GMM is classified as unsupervised learning since we

do not know the regimes beforehand. The mixture

probabilities are key parameters that need to be es-
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Figure 2: Daily Returns of the VIX.

timated. However, the mixture probabilities under

a traditional GMM are not specified in a parametric

form. Instead, we examine the Logistic Mixture of

Linear Components (LMLC) model introduced by

Tashman [4] and Tashman and Frey [5]. Under the

LMLC model, prior probabilities are modeled using

a logistic function, which can now depend on the

sensitivity of stress factor shifts. Thus, the LMLC

model is a linear combination of linear regression

models, like Equation (4), but in the LMLC model,

the weights in Equation (4) are probabilities of the

different regimes, which are in turn functions of

stress factor returns.

In fact, the LMLC model setting specified by Tash-

man [4] is quite general. The core factors are

grouped into (i) mixing components that deter-

mine the probability that each regime is responsi-

ble for producing an observation and (ii) regression

factors that are used for each regression. These

sets of core factors can overlap or even be dis-

joint.

For simplicity, we consider only two regimes. (Ex-

tending to multiple regimes is straightforward.)

The core factors, at time ti, are grouped as fol-

lows:

si : d-dimensional vector of mixing

components

x
p1q
i : d1-dimensional vector of stress factors

for Component 1

x
p2q
i : d2-dimensional vector of stress factors

for Component 2

Let y � py1, y2, . . . , ynq
T represent the response

variable that is generated from different regimes

with n observations. We assume each yi is gener-

ated from a different regime, which is not known

beforehand.

Dynamically adjusting transitive stress tests
to shocks

The stress factors in the mixing component s can

be distinct from the stress factors appearing in each

of the linear components. These risk factors deter-
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Expectation-Maximization (EM) Algorithm

EM is a powerful statistical technique that estimates parameters of

statistical models via likelihood functions.

Under EM, the model depends on latent or unobserved random

variables–in our case, an unknown function that identifies the

regimes. The EM algorithm starts with an initial guess of

parameters, and then iterates between the following two steps:

• E-step: Given the current value of the parameters,

estimate the distribution of the hidden variable.

For each observation, estimate the (posterior) probability

that each mixture distribution generated it.

• M-step: Update the parameters in order to maximize the

joint distribution of the data and the hidden variable.

Compute parameters maximizing the expected

log-likelihood found in the E step.

mine the (prior) probability that each regime gen-

erated the observation. The prior probabilities for

Regimes 1 and 2 are modeled using a logistic func-

tion:

p1psi | αq �
eα

T si

1 � eαT si
(5)

p2psi | αq � 1 � p1psi | αq (6)

The vector of parameters α is calibrated to data

and measures how sensitive the probabilities are to

stress factors. These parameters thus provide a link

between prior probabilities and stress factors s. For

example, a large shock in s might correspond to a

probability close to one for a more volatile regime,

while a moderate shock might have a significant

probability for another regime.

The main result of the LMLC model can be

represented by the following equation, which

gives the expected return of the response

variable conditioned on the core factor shifts

psj , x
p1q
j , x

p2q
j q:

Epyj | sj , x
p1q
j , x

p2q
j q � p1psj |αqE1pyj | x

p1q
j q

�p2psj |αqE2pyj | x
p2q
j q , (7)

where the expected return conditional on regime k

is

Ekryj | x
pkq
j s �

�
βpkq

	T
x
pkq
j (8)

Equation (7) extends transitive stress tests to mul-

tiple regimes. For each regime, the regression func-

tions are referred to as linear components.

The parameters in Equations (7)–(8), (α, βp1q,

βp2q), are estimated using the Expectation Max-

imization (EM) algorithm.5 The EM algorithm

computes the maximum likelihood parameters for

5See Dempster, Laird, and Rubin [3].
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How do we select regimes? How many?

We mentioned that regimes can be selected subjectively or by

expert knowledge.

Under the logistic mixture of linear components (LMLC), we first

select the number of regimes. The fitting of the LMLC model is

based on the EM algorithm, which provides estimates for beta for

each regime.

The number of regimes can be determined from an iterative

procedure. We can sequentially increase the number of regimes,

apply the EM algorithm, and determine if the parameters from the

regressions are still statistically significant or not. In addition, we

can use the Bayesian information criterion (BIC) to determine the

appropriate number of regimes:

BIC � �2l � p logpnq ,

where l is the log-likelihood and p is the number of parameters in

the model. Under BIC, there is a trade-off by increasing the

likelihood by fitting the model with more parameters (resulting in

overfitting). The model with the more negative BIC value is

desirable.
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statistical models, which have unknown or latent

random variables. In our case, the unknown ran-

dom variable itself indicates which component gen-

erated an observation. (See Appendix A for more

details.)

We can interpret (7), loosely, to be a combination

of two transitive stress tests. Under the general

setting, the core risk factors in each regime can

be different, and the probabilities themselves can

be driven from yet another set of core factors. Al-

though the LMLC setting is fairly general, our ex-

amples in the next section will be simple, as we

start by considering only one core factor.

Examples

Our first example involves a dividend future. Div-

idends are usually described as an asset class be-

cause they are a dedicated trading instrument and

have specific dynamics (see [1]). In June 2008,

Eurex launched listed futures benchmarked on the

EURO STOXX 50 Dividend Points index (SX5ED)

to replace or complement dividend swap offer-

ings. The SX5ED futures have annual expiry dates

set to the third week of December. The EURO

SX5E is the most active market for dividend fu-

tures as the European stocks pay a superior divi-

dend yield.

We consider a specific futures contract, FEXDZ7,

which expires in December 2017. As an explana-

tory variable, we choose the SX5E’s relative re-

turn. We apply the LMLC model, as specified by

Equation (7). Figure 3 provides a plot of FEXDZ7

returns along with the regimes. In this plot, we

observe two regimes, where the gray blocks indi-

cates one of the regimes. Figure 4 shows the his-

togram of estimated posterior probabilities of the

first component. (The second component has a

similar plot.) A peak at the probability of one indi-

cates that the mixture component is well separated

from the other components while significant mass

in the middle of the histogram indicates overlap

with other components. From this histogram, we

observe a significant count for probability equal to

one, suggesting that two regimes exist.

The results of the regressions for each component

are provided in Table 2. The p-values for the betas

provided in Table 2 are extremely low, indicating

that they are statistically significant. The dividend

future has a beta of 0.35 in the first regime, and a

low beta of 0.04 in the second regime.

Stress test the dividend future

Now suppose the analysis date is 23-Aug-2017 (the

last observation in Figure 3). At this date, the div-

idend future is in the low beta regime. We apply

a stress test of -10% to SX5E returns. Adjust-

ing the probabilities, we obtain a relative return of

-2.7% for the future contract. This is a weighted

average of -3.48% and -0.36% with probabilities of

0.76 and 0.24, respectively. Since this is a fairly

large shock, we have a greater contribution from

the first regime.

But is this correct? Identifying regimes is a useful

first step. But adjusting probabilities makes sense

if reverting to the first regime seems possible. In

this example, one should not adjust the probability

since the dividend future is in an absorbing state,

which we will describe below. Here expert knowl-
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Avoid pitfalls in regime-switching models

Regime-switching models, such as LMLC, are powerful, as are

algorithms like EM for parameter estimation.

Knowing the current regime is important. But be careful of

absorbing states. These are obvious in cases involving, say, firm

default, but less obvious in the example involving the dividend

future. From a risk perspective, we need to know when to turn

on/off probabilities.

edge should override our temptation to alter prob-

abilities.

Pull-to-realized effect and
regime-switching

The pull-to-realized effect common in dividend fu-

tures makes them an instrument with very specific

dynamics. Around 1.5 years to expiry, dividend fu-

tures undergo a big change in their risk dynamics

and start trading at a discount to a fixed bullet pay-

ment corresponding to the expected dividends (see

[1]). Consequently, volatility decreases as early as

Q4 of the previous year. The pull-to-realized effect

is believed to come from three sources: long-term

dividends trade more like equities; short-term div-

idends trade like zero-coupon bond; and the div-

idend uncertainty disappears early in the process

(after a few months).

This example demonstrates that identifying

regimes is useful, but that one should not blindly

adjust probabilities. In this case, there is a struc-

tural change in the dividend future’s dynamics. So

a more appropriate stress test for a -10% shift in

SX5E is to use the current regime, which results in

a P&L of -0.36%.

Although adjusting the component probabilities for

dividend futures did not make sense, adjusting

component probabilities for other risk factors such

as FX rates, implied volatilities, or asset class re-

turns such as hedge fund returns is worthwhile.

For instance, we have empirical evidence of inter-

est rate regimes in which yield curves steepen or

flatten, corresponding to economic cycles. In this

case, a mixing component based on a macroeco-

nomic factor, such as GDP or manufacturing out-

put, would be appropriate.

Another application of regime-switching is the

modeling of hedge fund strategies that exhibit

asymmetric payoff profiles. Tashman [4] investi-

gates the returns of merger arbitrage strategies and

shows that stress tests under LMLC produce more

severe expected losses than a linear model would

predict.

We finish this section with our second example in-

volving the VIX. The VIX is a key gauge of fear

in the market and is sometimes referred to as the

fear index. We treat VIX returns as the response

variable and select the S&P 500 return as the core

factor. We fit two regimes under the LMLC model.

Table 3 shows the results. The p-values for the
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Figure 3: Evidence of regimes for FEXDZ7

Figure 4: Regime Probabilities for Component 1
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Table 2: Logistic Mixture Model Fit for Dividend Future FEXDZ7

Coefficient Estimate Std. Error P-value

Regime 1 Intercept 0.045 0.022 0.04

βS5XE 0.35 0.017   2� 10�16

Regime 2 Intercept 0.012 0.007 0.08

βS5XE 0.037 0.013 0.004

Table 3: Logistic Mixture Model Fit for VIX for 2007-2017

Coefficient Estimate Std. Error P-value

Regime 1 Intercept -0.33 0.12 0.002

βSP500 -2.98 0.086   2.2� 10�16

Regime 2 Intercept 0.80 0.20 8.5� 10�05

βSP500 -9.04 0.25   2.2� 10�16

Figure 5: Nonlinear Stress Test for VIX
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beta coefficients are small, and thus significant.

The second regime includes elevated returns of the

VIX during adverse market periods.

One key benefit to applying mixture models is that

a nonlinear profile can arise from core factor shifts.

A linear combination of Gaussian distributions can

produce a fat-tailed distribution. Figure 5 displays

this nonlinear profile. Applying a linear model (the

dashed line in Figure 5) would underestimate the

movement of the VIX for negative shifts in the S&P

500.

Concluding Remarks

Transitive stress tests incorporate correlations and

volatility estimates for risk factors. They allow a

parsimonious set of core factors to be shifted, while

the remaining shifts in peripheral factors are in-

ferred from a calibrated covariance matrix. Transi-

tive stress tests are useful since they enable risk and

portfolio managers to construct forward-looking

scenarios and examine relationships among differ-

ent asset classes.

The required volatility and correlation estimates for

transitive stress tests are commonly estimated from

specific historical periods. However, as we have

shown, a logistic mixture model can instead allow

the stress tests themselves to determine the proba-

bility that each regime is responsible for producing

the stress observation. This approach should be

used alongside the traditional approach in which

specific periods are explicitly specified.
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Appendix A: Expectation-Maximization (EM) Algorithm

We outline the maximum likelihood parameter estimation for LMLC using EM (which is outlined in

Tashnam and Frey [5]). First, the complete maximum likelikehood function is

Lpα, βp1q, βp2q, σ1, σ2q �
n¹
i�1

�
p1psi|αqf1pyi | x

p1q, βp1q, σ21q
�z1i �

p2psi|αqf2pyi | x
p2q, βp2q, σ22q

�z2i
(A1)

where z is the random variable indicating which component is responsible for the observation. For

example, z1i is one if the i-th observation is generated from the first component, otherwise it is equal

to zero. The probability of observing the response in regime k conditional on stress factor settings at ti

is fkpyi|x
pkq, βpkq, σ2kq. If the errors are normally distributed then

fkpyi | x
pkq, βpkq, σ2kq �

1

2πσ2k
e�pyi�β

pkqT xpkqq2{p2σ2
kq (A2)

The log-likelihood equation is

lpα, βp1q, βp2q, σ1, σ2q �
2̧

k�1

ņ

i�1

zki

�
logppkpsi|αq � logpfkpyi | x

pkq, βpkq, σ2kqq
�

(A3)

Substituting prior probabilities and the probability density f gives

l �
ņ

i�1

z1i

�
log

�
eα

T s

1 � eαT s

�
�

1

2
logp2πσ21q �

pyi � βp1qTx
p1q
i q2

2σ21

�
(A4)

�
ņ

i�1

z2i

�
log

�
1

1 � eαT s



�

1

2
logp2πσ22q �

pyi � βp2qTx
p2q
i q2

2σ22

�

E-Step

For each i, compute posterior probabilities for regime k:

τki �
pkpsi|αqfkpyi | x

pkq
i , βpkq, σ2kq°2

j�1 pjpsi|αqfjpyi | x
pjq
i , βpjq, σ2j q

(A5)

M-Step

First, we update α (using Newton-Raphson):

α� � arg max
α

�
ņ

i�1

z1i log

�
eα

T si

1 � eαT si

�
� z2i log

�
1

1 � eαT si


�
(A6)
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We update Equation (A5) using α� to obtain τ�ki. We then update βpkq by running a weighted regression

for each regime:

�
βpkq

	�
� arg min

βpkq

ņ

i�1

τ�ki
pyi � βpkqTx

pkq
i q2

σ2k
(A7)

The residual volatility is updated using posterior probabilities:

pσ�k q
2 �

°n
i�1 τ

�
kipyi � βpkqTx

pkq
i q2°n

i�1 τ
�
ki

(A8)

Now we repeat the E-step and M-step until convergence.

Multiple initial points

It is possible that convergence can occur at a local maximum of l instead of the global maximum. One

way to overcome this problem is to implement EM with multiple initial estimates. See [5] for more

details.
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